Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system

نویسندگان

  • John C Anderson
  • Simon B Laughlin
چکیده

White noise techniques are used to compare the two photoreceptor sub-types in blowfly retina, the short visual fibres (R1-6) that code achromatic contrast, and the long visual fibres (R7 and R8) that together code wavelength distribution and polarisation plane. Measurements of signal and noise spectra and contrast gain, taken across a broad intensity range, permit a detailed comparison of coding efficiency under natural conditions of illumination. As a function of excitation (effective photons per photoreceptor per second; h upsilon/rec per s), adaptive changes in the long and short visual fibres are similar, suggesting that post-rhodopsin their phototransduction cascades are identical. Under identical natural daylight conditions (photons per cm2 per second; h upsilon/cm2 per s) short visual fibres catch more photons, thus operating with a higher signal to noise ratio and faster response, to consistently outperform the long visual fibres. Long visual fibres compensate for their poor quantum catch by having a higher absolute gain (mV/h upsilon) which at low light intensities enables them to achieve a level of contrast gain (mV/unit contrast) similar to the short visual fibres. Differences in signal to noise ratios are related to known differences in photoreceptor structure and synaptic frequency among visual interneurons. The principles of matching sensitivity and synapse number to quantum catch described here could explain analogous differences between chromatic and achromatic pathways in mammalian and amphibian retinas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris.

Fast detection of visual change can be mediated by visual processes that ignore chromatic aspects of the visual signal, relying on inputs from a single photoreceptor class (or pooled input from similar classes). There is an established link between photoreceptor processing speed (in achromatic vision) and visual ecology. Highly maneuverable flies, for example, have the fastest know photorecepto...

متن کامل

Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse th...

متن کامل

Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications.

Color vision is not uniform across the retina because of differences in photoreceptor density and distribution. Retinal areas with a high density of cone photoreceptors may overlap with those with a high density of ganglion cells, increasing hue discrimination. However, there are some exceptions to this cell distribution pattern, particularly in species with horizontal visual streaks (bands of ...

متن کامل

Edge detection depends on achromatic channel in Drosophila melanogaster.

Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated. I...

متن کامل

Relationship of chromatic visual-evoked potentials and the changes of foveal photoreceptor layer in central serous chorioretinopathy patients.

PURPOSE To investigate the relative involvement of chromatic and achromatic visual subsystems in central serous chorioretinopathy, and to correlate the function changes with the changes of the foveal photoreceptor layer using Fourier domain optical coherence tomography (FD-OCT). METHODS Central serous chorioretinopathy patients and control subjects were tested and compared. Equiluminant Chrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2000